Abstract

The Fredholm integral equation method (FIM), originally introduced by Holtet al. to solve the light scattering problem for ellipsoidal particles, is reinvestigated by taking into account a recent great progress in numerical computers. A numerical code optimized for vector-processing computers is developed, and is applied to the light scattering by spherical and spheroidal particles. The results for these particles are compared with those by the Mie theory and by Asano and Yamamoto, respectively, and it is confirmed that the agreement with both of them is satisfactory. Sample calculations are also performed for the ‘oblique’ incidence, in which the direction of incidence is not parallel nor perpendicular to the symmetry axis of the particle. No difficulties in the computation are found compared with the calculations for the parallel or perpendicular incidence. We study the efficiency factor for polarization (Qpol) in general direction of incidence for spheroidal particles, and discuss the deviation from the Rayleigh approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call