Abstract
The aim of this paper is to study time-dependent problems like sound propagation and light scattering in binary mixtures undergoing a simple reversible symmetric reaction—of the type A+A⇌B+B—close to the final stage of the chemical reaction where the system tends to chemical equilibrium. The molecules of the gas are modeled as rigid spheres and—apart from the binding (or formation) energy of the molecules—the internal degrees of freedom were not taken into account. The hydrodynamic description is based on the conservation laws of mass, momentum and energy closed by the constitutive equations for the pressure tensor, heat flux vector, diffusion velocity and rate of reaction which correspond to the Navier–Stokes law and generalized laws of Fourier, Fick and Arrhenius, respectively. For the problem of sound propagation it is shown how endothermic and exothermic reactions have influence on the phase speed and on the attenuation coefficient, whereas for the problem of light scattering, their influences on the width of the Rayleigh and Brillouin lines and the position of the Brillouin peak are analyzed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.