Abstract

Recent astrophysical transient Swift J1913.1+1946 may be associated with the $\gamma$-ray burst GRB 221009A. The redshift of this event is $z\simeq 0.151$. Very high-energy $\gamma$-rays (up to 18 TeV) followed the transient and were observed by LHAASO, additionally Carpet-2 detected a photon-like air shower of 251 TeV. Photons of such high energy are expected to readily annihilate with the diffuse extragalactic background light (EBL) before reaching Earth. If the $\gamma$-ray identification and redshift measurements are correct, new physics could be necessary to explain these measurements. This letter provides the first CP-even scalar explanation of the most energetic 18 TeV event reported by LHAASO. In this minimal scenario, the light scalar singlet $S$ mixes with the Standard Model (SM) Higgs boson $h$. The highly boosted $S$ particles are produced in the GRB and then undergo the radiative decay di-photon $S\rightarrow \gamma\gamma$ while propagating to Earth. The resulting photons may thus be produced at a remote region without being nullified by the EBL. Hence, the usual exponential reduction of $\gamma$-rays is lifted due to an attenuation that is inverse in the optical depth, which becomes much larger due to the scalar carriers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call