Abstract

Over the past decades, organometallic complexes with precious elements, such as ruthenium and iridium, are widely used as visible-light photoredox catalysts. Recently, more and more complexes based on earth-abundant and inexpensive elements have been used as sensitizers in photochemistry. Although the photoexcited state lifetimes of iron complexes are typically shorter than those of traditional photosensitizers, the utilization of iron catalysts in photochemistry has sprung up owing to their abundance, low price, nontoxicity, and novel properties, including exhibiting ligand to metal charge transfer states. This concept focuses on recent advances in light-driven iron catalysis in organic transformations, including iron/photoredox dual catalysis, light-induced iron photoredox catalysis and light-induced generation of active iron catalysts. The prospect for the future of this field is also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call