Abstract

Extracellular microenvironment is highly dynamic where spatiotemporal regulation of cell-instructive cues such as matrix topography tightly regulates cellular behavior. Recapitulating dynamic changes in stimuli-responsive materials has become an important strategy in regenerative medicine to generate biomaterials which closely mimic the natural microenvironment. Here, light responsive liquid crystal polymer networks are used for their adaptive and programmable nature to form hybrid surfaces presenting micrometer scale topographical cues and changes in nanoscale roughness at the same time to direct cell migration. This study shows that the cell speed and migration patterns are strongly dependent on the height of the (light-responsive) micrometer scale topographies and differences in surface nanoroughness. Furthermore, switching cell migration patterns upon in situ temporal changes in surface nanoroughness, points out the ability to dynamically control cell behavior on these surfaces. Finally, the possibility is shown to form photoswitchable topographies, appealing for future studies where topographies can be rendered reversible on demand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.