Abstract

Herein, a light-responsive and light-induced bond-exchange-reaction (BER)-capable actuator of the monodomain liquid crystal elastomer (xMLCEazo), developed using main-chain mesogenic oligomers containing azobenzene and allyl sulfide linkages, is investigated. Large quantities of the azobenzene and allyl dithiol linkages are incorporated into the main-chain mesogenic oligomer prepared via thiol-acrylate Michael addition polymerization (TAMAP). The xMLCEazo film is generated via visible-light-induced BER of the drawn polydomain xLCEazo (xPLCEazo) film prepared via TAMAP of tetrathiol cross-linkers and diacrylate-terminated mesogenic oligomers. The xMLCEazo film exhibits large length actuation (38%) through the photothermal effect, along with excellent self-healing and reprogramming properties, under ultraviolet (UV) light irradiation. UV light induced BER of the xMLCEazo film is used to develop complex-shaped actuators with a bilayer film, containing the xMLCEazo and xPLCEazo films, which are bonded by the UV light induced BER without glue. The individual arm of the complex eight-arm flower is remotely actuated under UV light irradiation, and a circular band is rolled under blue laser light irradiation, demonstrating the local remote-controlled actuation and fuel-free motion of the motile soft robot using light irradiation, respectively. Thus, the xMLCEazo film can be expanded to other interesting applications requiring reprogrammable, self-healing, reprocessable, patternable, and remote-controlled light-triggered elastic, rubber-like actuators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.