Abstract

Photosynthetic capacity of yew needles depends primarily on light environment, with little evidence that developmental stage is a determinant photosynthetic performance. However, needle morphology is mostly determined by plant size. Populations of yew Taxus baccata are often characterized by a lack of natural regeneration and stands of this species have been afforded priority conservation status within the European Union. Light availability is known to be a key factor influencing recruitment dynamics in yew. To explore potential size-related responses to light, we investigated the distribution, photosynthetic efficiency and needle morphological traits in yew across a gradient of light availability at Atlantic oak woodland in southwest Ireland. Young plants were more common in shaded areas whereas saplings and juvenile yews were distributed in areas of higher light availability. Photosynthetic capacity of yew needles was found to depend primarily on light environment, with little evidence that the developmental stage is a determinant of photosynthetic performance. Photoinhibition was evident in needles sampled from high light environments across all demographic size classes. However, larger plants also showed particularly strong needle morphological responses (needle length, width, thickness, and specific leaf area) to light levels, which were mostly lacking in seedlings. We conclude that there is a dual control of yew light responses; the efficiency of the photosynthetic light reactions is largely linked to the light environment in which the plants grew, while needle morphology is mostly determined by the size of the plants. The findings of this study highlight the importance of considering all life-history stages and multiple traits when evaluating species response to light availability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call