Abstract

During daytime Plerogyra sinuosa Dana displays globular expandable tentacles (“bubbles”) which foster the photosynthetic ability of the coral. Adaptational responses of this coral to different depths (5–25 m) and light conditions were investigated by photosynthetic pigment analysis, insitu measurements of oxygen production, transplantation and shading experiments. Pigment concentrations per unit tissue dry weight were variable, but unrelated to depth. Pigment concentrations per zooxanthellae cell remained constant and bubble size increased with depth. Light intensity at 25 m was 20 to 25% of the 5-m value, but daily integrated rates of photosynthesis were 65% of the 5-m rates, indicating a higher light utilization efficiency in deeper corals. Coral heads transplanted from 25 to 5 m died within 20 d if not protected against UV-radiation, but corals transplanted from 5 to 25 m acclimatized to the new light condition. Photosynthetic oxygen production and bubble size increased in shaded, sun-adapted corals within 60 min and decreased in sun-exposed, shade-adapted corals. The variable bubble size is interpreted as an adaptational mechanism to optimize light exposure of zooxanthellae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call