Abstract

By analyzing light-evoked spike responses, cation currents (ΔIC) and chloride currents (ΔICl) of over 100 morphologically-identified retinal ganglion cells (GCs) in dark-adapted mouse retina, we found there are at least 14 functionally- and morphologically-distinct types of RGCs. These cells can be divided into 5 groups based on their patterns of spike response to whole field light steps (SRWFLS), a GC identification scheme commonly used in studies with extracellular recording techniques. We also found that all GCs in the mouse retina express strychnine-sensitive glycine receptors, and receive light-elicited chloride current (ΔICl) accompanied by a conductance increase from narrow-field, glycinergic amacrine cells. As the dark membrane potential of RGC are near the chloride-equilibrium potential, mouse GCs’ spike responses are mediated primarily by bipolar cells inputs, and modulated by “shunting inhibition” from narrow-field amacrine cells. Analysis of strychnine actions on light-evoked cation current ΔIC (bipolar cell inputs) in GCs suggests that narrow-field amacrine cells modulate GCs by sending ON-OFF crossover feedback signals to presynaptic bipolar cell axon terminals via sign-inverting glycinergic synapses, and the feedback signals are synergistic to the bipolar cell light responses. Therefore narrow-field amacrine cells enhance light-evoked bipolar cell inputs to GCs by presynaptic “synergistic addition”, besides the abovementioned postsynaptic “shunting inhibition” in GCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call