Abstract

The Asian grassMiscanthus sinensis(Poaceae) is being considered for use as a bioenergy crop in the U.S. Corn Belt. Originally introduced to the United States for ornamental plantings, it escaped, forming invasive populations. The concern is that naturalizedM. sinensispopulations have evolved shade tolerance. We tested the hypothesis that seedlings from within the invasive U.S. range ofM. sinensiswould display traits associated with shade tolerance, namely increased area for light capture and phenotypic plasticity, compared with seedlings from the native Japanese populations. In a common garden experiment, seedlings of 80 half-sib maternal lines were grown from the native range (Japan) and 60 half-sib maternal lines from the invasive range (U.S.) under four light levels. Seedling leaf area, leaf size, growth, and biomass allocation were measured on the resulting seedlings after 12 wk. Seedlings from both regions responded strongly to the light gradient. High light conditions resulted in seedlings with greater leaf area, larger leaves, and a shift to greater belowground biomass investment, compared with shaded seedlings. Japanese seedlings produced more biomass and total leaf area than U.S. seedlings across all light levels. Generally, U.S. and Japanese seedlings allocated a similar amount of biomass to foliage and equal leaf area per leaf mass. Subtle differences in light response by region were observed for total leaf area, mass, growth, and leaf size. U.S. seedlings had slightly higher plasticity for total mass and leaf area but lower plasticity for measures of biomass allocation and leaf traits compared with Japanese seedlings. Our results do not provide general support for the hypothesis of increasedM. sinensisshade tolerance within its introduced U.S. range compared with native Japanese populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call