Abstract

Straight single-line defect optical waveguides in photonic crystal slabs are designed by the finite difference time-domain method and fabricated into a silicon-on-insulator (SOI) wafer. By employing an airbridge structure, clear light propagation for both polarizations is observed without any leakage along the waveguide. This experimental result is well explained by photonic bands of pure guided modes. Minimum propagation loss is estimated to be 11 dB/mm. This value is lower than that reported so far for three-line-defect waveguides with an SOI slab structure and almost comparable to that for an index confinement waveguide with a rectangular Si core. This propagation loss is dominated by the scattering loss by some irregularities. However, photonic crystal waveguides have the possibility of an essential lower scattering loss than in the index confinement waveguide because of the inhibition of radiation modes by the photonic bandgap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.