Abstract

The ability to exhibit life-like oscillatory motion fueled by light represents a new capability for stimuli-responsive materials. Although this capability has been demonstrated in soft materials like polymers, it has never been observed in molecular crystals, which are not generally regarded as dynamic objects. In this work, it is shown that molecular crystalline microwires composed of (Z)-2-(3-(anthracen-9-yl)allylidene)malononitrile ((Z)-DVAM) can be continuously actuated when exposed to a combination of ultraviolet and visible light. The photo-induced motion mimics the oscillatory behavior of biological flagella and enables propagation of microwires across a surface and through liquids, with translational speeds up to 7 μm s-1 . This is the first example of molecular crystals that show complex oscillatory behavior under continuous irradiation. A model that relates the rotation of the transition dipole moment between reversible E→Z photoisomerization to the microscopic torque can qualitatively reproduce how the rotational frequency depends on light intensity and polarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.