Abstract
Light pollution is one of the environmental pollution problems facing the world. The research on the measurement standard of light pollution is not perfect at present. In this paper, we proposed a Markov random field model to determine the light pollution risk level of a site. Firstly, the specific data of 12 indicators of 5 typical cities were collected, and 10-factor indicators were screened using the R-type clustering algorithm. Then, the entropy weight method was used to determine the weight, and the light pollution measurement method of the Markov random field was established. The model was tested by five different data sets, and the test results show that the model is very effective. Three kinds of potential effects were proposed, and the relationship between the factor index and potential effects was established by using the partial least square method. Three possible intervention strategies for solving the problem of light pollution are pointed out: road lighting system planning, increasing vegetation coverage, and building system planning. Finally, a simulated annealing algorithm was used to determine the best intervention strategy, concluding that using strategy 1 in urban neighborhood 2 was the most effective measure, reducing the risk level of light pollution by 17.2%.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.