Abstract

The existence of light particles with spin during inflation is prohibited by the Higuchi bound. This conclusion can be evaded if one considers states with a sizeable coupling with the inflaton foliation, since this breaks the de Sitter isometries. The action for these states can be constructed within the Effective Field Theory of Inflation, or using a CCWZ procedure. Light particles with spin have prescribed couplings with soft inflaton perturbations, which are encoded in consistency relations. We study the phenomenology of light states with spin 2. These mix with the graviton changing the tensor power spectrum and can lead to sizeable tensor non-Gaussianities. They also give rise to a scalar bispectrum and trispectrum with a characteristic angle-dependent non-Gaussianity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call