Abstract
Our data support empirical models indicating that algal productivity is low relative to total phosphorus (TP) levels in prairie lakes with high sulphate concentrations. Mean chlorophyll accounted for 91.1% of the variance in euphotic zone primary production (ΣA) in Humboldt Lake (total dissolved solids (TDS) = 3.3 g∙L−1; Zmax = 6 m), while TP, total dissolved phosphorus, and water temperature accounted for 82.7% of ΣA variance in Redberry Lake (TDS = 20.9 g∙L−1; Zmax = 17 m). The relative importance of these variables to ΣA resulted from biological, chemical, and physical differences of these lakes. Light usually penetrated to the bottom of Redberry Lake due to a mean euphotic zone (Zeu) chlorophyll of 1.7 mg∙m−3, while Humboldt Lake's mean Zeu was 3.4 m with a mean chlorophyll concentration of 62.6 mg∙m−3. Chlorophyll was the dominant factor correlated with light penetration in Humboldt Lake (r2 = 0.65) but not in Redberry Lake. Photosynthetic capacity was correlated (r2 = 0.72) with water temperature only in Redberry Lake. The mean ΣA was 57.1 and 230.2 mg C∙m−2∙h−1 for Redberry and Humboldt lakes, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Canadian Journal of Fisheries and Aquatic Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.