Abstract

We present a systematic investigation of few-nucleon systems and light nuclei using the current LENPIC interactions comprising semilocal momentum-space regularized two- and three-nucleon forces up to third chiral order (N$^2$LO). Following our earlier study utilizing the coordinate-space regularized interactions, the two low-energy constants entering the three-body force are determined from the triton binding energy and the differential cross section minimum in elastic nucleon-deuteron scattering. Predictions are made for selected observables in elastic nucleon-deuteron scattering and in the deuteron breakup reactions, for properties of the $A=3$ and $A=4$ nuclei, and for spectra of $p$-shell nuclei up to $A = 16$. A comprehensive error analysis is performed including an estimation of correlated truncation uncertainties for nuclear spectra. The obtained predictions are generally found to agree with experimental data within errors. Similar to the coordinate-space regularized chiral interactions at the same order, a systematic overbinding of heavier nuclei is observed, which sets in for $A \sim 10$ and increases with $A$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call