Abstract

Recent theoretical developments have shown that extra space-time dimensions can lower the fundamental GUT, Planck, and string scales. However, recent evidence for neutrino oscillations suggests the existence of light non-zero neutrino masses, which in turn suggests the need for a heavy mass scale via the seesaw mechanism. In this paper, we make several observations in this regard. First, we point out that allowing the right-handed neutrino to experience extra space-time dimensions naturally permits the left-handed neutrino mass to be power-law suppressed relative to the masses of the other fermions. This occurs due to the power-law running of the neutrino Yukawa couplings, and therefore does not require a heavy scale for the right-handed neutrino. Second, we show that a higher-dimensional analogue of the seesaw mechanism may also be capable of generating naturally light neutrino masses without the introduction of a heavy mass scale. Third, we show that such a higher-dimensional seesaw mechanism may even be able to explain neutrino oscillations without neutrino masses, with oscillations induced indirectly via the masses of the Kaluza-Klein states. Fourth, we point out that even when higher-dimensional right-handed neutrinos are given a bare Majorana mass, the higher-dimensional seesaw mechanism surprisingly replaces this mass scale with the radius scale of the extra dimensions. Finally, we also discuss a possible new mechanism for inducing lepton-number violation by shifting the positions of D-branes in Type I string theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.