Abstract

The addition of azorubine to a viscoelastic aqueous dispersion of sodium oleate (NaOL, 0.43 M, 13% w/w) and KCl (up to 4% w/w) leads to a green gel-like system whose rheological behavior can be efficiently and reversibly triggered from remote by using UV light. Rheology, Differential Scanning Calorimetry (DSC) measurements and phase behavior studies indicate that the original texture of the NaOL dispersion is significantly hardened upon UV irradiation for 8 hours in the presence of azorubine, showing a seven hundred-fold increase in viscosity. The UV treatment brings about the trans to cis isomerization of azorubine, which modifies the structure of the NaOL wormlike micellar system, leading to a more entangled, close-textured network. The cooperative effect of KCl on the fluid viscosity is found to be concentration-dependent. The system slowly reverts to its original rheological behaviour after standing for about 1 day. These results are relevant for the development of stimuli-responsive innovative systems based on biocompatible, non expensive and commercially available materials that can be used in a wide range of applications, such as in drug delivery or enhanced oil recovery, where a quick change in the physico-chemical features of the system is required but difficult to be performed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.