Abstract

We describe an assay for light microscopic visualization of specific glycosyltransferases on tissue sections or on cells. The assay uses a sequence of enzyme reactions that yields two moles of NADH for each mole of the uridine-5'-diphosphate (UDP) released during transfer of a monosaccharide from a UDP sugar to an acceptor. When diaphorase and tetrazolium salts are present in the incubation mixture, the tetrazolium salts are reduced to colored diformazans, which precipitate at the sites of glycosyltransferase activity. The validity of the assay was established by applying the technique to spermatozoa and liver, in which some glycosyltransferases have previously been localized. When suspensions of mouse spermatozoa were assayed for galactosyltransferase (GalTase) activity, diformazan precipitates appeared on the plasma membranes overlying the anterior heads of the spermatozoa, in agreement with immunochemical localizations. In mouse liver slices assayed with bilirubin as acceptor for glucuronyltransferase (GluTase) activity, dense diformazan deposits appeared on the hepatocytes but not on endothelial cells, also in agreement with immunochemical data. In the absence of acceptor or UDP sugar donor, diformazan deposits were minimal and random in all tissues tested. The assay's versatility was tested by incubating tissues with different sugar donors and acceptors to localize other sites of transferase activity. In mouse frozen liver sections, GalTase activity occurred in both hepatocytes and endothelial cells; in sections of rat submaxillary glands, GalTase activity was detected in mast cells. In liver sections, GlcuTase activity with o-aminophenol as acceptor was located primarily on the endothelial cells. With the appropriate sugar donor and acceptor, this assay should detect any transferase, other than the glucosyltransferases, that utilizes UDP sugars.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.