Abstract

We investigate the impact of unquenching effects on QCD Green's functions, in the form of quark-loop contributions to both the gluon propagator and three-gluon vertex, in a three-loop inspired truncation of the three-particle irreducible (3PI) effective action. The fully coupled system of Dyson-Schwinger equations for the quark-gluon, ghost-gluon and three-gluon vertices, together with the quark propagator, are solved self-consistently; our only input are the ghost and gluon propagators themselves that are constrained by calculations within lattice QCD. We find that the two different unquenching effects have roughly equal, but opposite, impact on the quark-gluon vertex and quark propagator, with an overall negative impact on the latter. By taking further derivatives of the 3PI effective action, we construct the corresponding quark-antiquark kernel of the Bethe-Salpeter equation for mesons. The leading component is gluon exchange between two fully dressed quark-gluon vertices, thus introducing for the first time an obvious scalar-scalar component to the binding. We gain access to time-like properties of bound states by analytically continuing the coupled system of Dyson-Schwinger equations to the complex plane. We observe that the vector axial-vector splitting is in accord with experiment and that the lightest quark-antiquark scalar meson is above 1 GeV in mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.