Abstract
Dark-grown plants of Sphaerocarpos, incubated in a liquid medium containing sucrose and mineral salts, have a much lower chlorophyll and nitrogen content than do light-grown plants. Two minutes of red light per 12 hours is about two-thirds as effective in increasing chlorophyll and nitrogen content as is continuous white light. These red light-induced increases are mediated by phytochrome, as they are reversible by alternating exposures to red and far-red light. They appear to be related to differences in the ultrastructure of the chloroplasts. Plastids from dark-grown plants are full of starch and develop few lamellae, while light-grown plastids contain little starch and have many lamellae. The ultrastructural studies are supported by starch determinations which revealed a phytochrome-mediated decrease in starch content. The effect of white light in increasing the chlorophyll and nitrogen content above the level attained in red light-treated plants is not mediated by photosynthetic activity. These results are related to similar responses in other archegoniates and angiosperm seedlings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.