Abstract

Light-matter interactions in inorganic perovskite nanolasers are investigated using single-crystalline cesium lead halide (CsPbX3, X = Cl, Br, and I) nanowires synthesized by the chemical vapor transport method. The perovskite nanowires exhibit a uniform growth direction, smooth surfaces, straight end facets, and homogeneous composition distributions. Lasing occurs in the perovskite nanowires at low thresholds (3 μJ/cm(2)) with high quality factors (Q = 1200-1400) under ambient atmospheric environments. The wavelengths of the nanowire lasers are tunable by controlling the stoichiometry of the halide, allowing the lasing of the inorganic perovskite nanowires from blue to red. The unusual spacing of the Fabry-Pérot modes suggests strong light-matter interactions in the reduced mode volume of the nanowires, while the polarization of the lasing indicates that the Fabry-Pérot modes belong to the same fundamental transverse mode. The dispersion curve of the exciton-polariton model suggests that the group refractive index of the polariton is significantly enhanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.