Abstract

Precise delivery of antineoplastic drugs to specific tumor region has drawn much attention in recent years. Herein, a light/magnetic hyperthermia triggered drug delivery with multiple functionality is designed based on methotrexate (MTX) modified thermo-sensitive magnetoliposomes (MTX-MagTSLs). In this system, MTX and oleic acid modified magnetic nanoparticles (MNPs) can be applied in biological and magnetic targeting. Meanwhile, lipophilic fluorescent dye Cy5.5 and MNPs are encapsulated into the bilayer of liposomes, which can not only achieve dual-imaging effect to verify the MTX-MagTSLs accumulation in tumor region, but also provide an appropriate laser irradiation region to release Doxorubicin (Dox) under alternating magnetic field (AMF). Both in vitro and in vivo results revealed that MTX-MagTSLs possessed an excellent targeting ability towards HeLa cells and HeLa tumor-bearing mice. Furthermore, the heating effect of MTX-MagTSLs was amplified 4.2-fold upon combination with AMF and local precise near-infrared laser irradiation (808nm) (DUAL-mode) to rapidly reach the phase change temperature (Tm) of MTX-MagTSLs in 5min compared with either AMF or laser stimulation alone, resulting in a significantly enhanced release of Dox at tumor region and precise cancer synergetic theranostics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call