Abstract

The Internet of Medical Things (IoMT) is being incorporated into current healthcare systems. This technology intends to connect patients, IoMT devices, and hospitals over mobile networks, allowing for more secure, quick, and convenient health monitoring and intelligent healthcare services. However, existing intelligent healthcare applications typically rely on large-scale AI models, and standard IoMT devices have significant resource constraints. To alleviate this paradox, in this paper, we propose a Knowledge Distillation (KD)-based IoMT end-edge-cloud orchestrated architecture for medical image segmentation tasks, called Light-M, aiming to deploy a lightweight medical model in resource-constrained IoMT devices. Specifically, Light-M trains a large teacher model in the cloud server and employs computation in local nodes through imitation of the performance of the teacher model using knowledge distillation. Light-M contains two KD strategies: (1) active exploration and passive transfer (AEPT) and (2) self-attention-based inter-class feature variation (AIFV) distillation for the medical image segmentation task. The AEPT encourages the student model to learn undiscovered knowledge/features of the teacher model without additional feature layers, aiming to explore new features and outperform the teacher. To improve the distinguishability of the student for different classes, the student learns the self-attention-based feature variation (AIFV) between classes. Since the proposed AEPT and AIFV only appear in the training process, our framework does not involve any additional computation burden for a student model during the segmentation task deployment. Extensive experiments on cardiac images and public real-scene datasets demonstrate that our approach improves student model learning representations and outperforms state-of-the-art methods by combining two knowledge distillation strategies. Moreover, when deployed on the IoT device, the distilled student model takes only 29.6 ms for one sample at the inference step.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call