Abstract

The light dependence of translation and successive assembly of the D1 reaction center protein into Photosystem II subcomplexes was followed in fully developed chloroplasts isolated from the dark phase of diurnally grown spinach. The incorporation of synthesized D1 protein into Photosystem II (PSII) was analyzed by fractionation of radiolabeled unassembled protein and PSII (sub)complexes on sucrose density gradients. The ribosomes with attached nascent chains were recovered as pellets in the same gradients, and nascent chains of the D1 protein were immunoprecipitated. The analysis showed that absence of light during translation leads to an increased accumulation of polysome-bound D1 translation intermediates, indicating that light is required for efficient elongation of the D1 protein. The accumulation of the D1 protein and CP43 decreased three-fold in darkness, whereas accumulation of the D2 reaction center protein was not affected by light. In addition, light was also required for efficient incorporation of the D1 protein into the PSII core complex. In darkness, the newly synthesized D1 protein accumulated predominantly as unassembled protein or in PSII subcomplexes smaller than 100 kDa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call