Abstract

Creep tests were conducted in torsion on TEXTRON type SCS-6™ silicon carbide (SiC) fibers during irradiation with 14 MeV deuterons for 450°C, 600°C and 800°C. The fibers, produced by chemical vapor deposition (CVD), should be representative of the chemical vapor infiltrated (CVI) matrix of a SiC/SiC composite. SiC is known to undergo irradiation induced swelling which occurs without an incubation dose for temperatures below about 1000°C [R.J. Price, J. Nucl. Mater. 33 (1969) 17]. Such swelling in SiC may mask the irradiation creep strain in a tensile experiment, but plays a minor role in torsional creep tests. The torsional irradiation creep curves are characterized by long lasting strain transients during which the creep rate slows down before reaching approximately constant values. The steady state torsional creep rate γ ̇ s exhibited a linear dependence on stress and particle flux and it decreased when the temperature was increased. The temperature dependence of γ ̇ s in the range 450–800°C is similar to that of swelling for neutron irradiated SiC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.