Abstract

Air pollution by nitrogen oxides represents a serious environmental problem in urban areas where numerous sources of these pollutants are concentrated. One approach to reduce the concentration of these air pollutants is their light-induced oxidation in the presence of molecular oxygen and a photocatalytically active building material which uses titanium dioxide as the photocatalyst. Herein, results of an investigation concerning the influence of the photon flux and the pollutant concentration on the rate of the photocatalytic oxidation of nitrogen(ii) oxide in the presence of molecular oxygen and UV(A) irradiated titanium dioxide powder are presented. A Langmuir-Hinshelwood-type rate law for the photocatalytic NO oxidation inside the photoreactor comprising four kinetic parameters is derived being suitable to describe the influence of the pollutant concentration and the photon flux on the rate of the photocatalytic oxidation of nitrogen(ii) oxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.