Abstract

To evaluate the effects of increasing photosynthetic photon flux (PPF) on optimal fertilizer concentrations, we grew wax begonia (Begonia semperflorens-cultorum Hort.) and petunia (Petunia ×hybrida Hort. Vilm-Andr.) seedlings in a soilless growing medium without starter fertilizer under three PPF treatments (high, medium, and low corresponding to an average daily PPF of 23.2, 15.6, and 9.8 mol·m-2.d-1, respectively) and subirrigated with six fertilizer concentrations [electrical conductivity (EC) of 0.12, 0.65, 1.18, 1.71, 2.24, and 2.77 dS·m-1]. Compared to low PPF, shoot dry mass of wax begonia and petunia seedlings increased 2- and 3-fold, respectively, at high PPF. Fertilizer EC resulting in maximum shoot dry mass was the same (1.28 and 1.87 dS·m-1 for wax begonia and petunia, respectively) in the three PPF treatments. Shoot dry mass and leaf area of petunias decreased little at higher than optimal fertilizer EC in the three PPF treatments, while growth of begonia was inhibited at high fertilizer EC. The optimal fertilizer range, calculated as the lower and upper limits of fertilizer EC within which plant growth was not reduced by >10% as compared to the optimum EC was 0.65 to 1.71 dS·m-1 in wax begonia and 1.18 to >2.77 dS·m-1 for petunia. Compared to those grown at 1.18 dS·m-1, wax begonias grown at 1.71 dS·m-1 had similar dry mass, but were shorter in all three PPF treatments (average height reduction of 6.5%). In general, EC of the top layer of the growing medium was higher than that of the bottom layer of the growing medium, and this difference increased with increasing EC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call