Abstract

The present study is aimed at assessing the extent of arsenic (As) toxicity under three different light intensities-optimum (400μmole photon m(-2)s(-1)), sub-optimum (225μmole photon m(-2)s(-1)), and low (75μmole photon m(-2)s(-1))-exposed to Helianthus annuus L. var. DRSF-113 seedlings by examining various physiological and biochemical parameters. Irrespective of the light intensities under which H. annuus L. seedlings were grown, there was an As dose (low, i.e., 6mgkg(-1) soil, As1; and high, i.e., 12mgkg(-1) soil, As2)-dependent decrease in all the growth parameters, viz., fresh mass, shoot length, and root length. Optimum light-grown seedlings exhibited better growth performance than the sub-optimum and low light-grown seedlings; however, low light-grown plants had maximum root and shoot lengths. Accumulation of As in the plant tissues depended upon its concentration used, proximity of the plant tissue, and intensity of the light. Greater intensity of light allowed greater assimilation of photosynthates accompanied by more uptake of nutrients along with As from the medium. The levels of chlorophyll a, b, and carotenoids declined with increasing concentrations of As. Seedlings acquired maximum Chl a and b under optimum light which were more compatible to face As1 and As2 doses of As, also evident from the overall status of enzymatic (SOD, POD, CAT, and GST) and non-enzymatic antioxidant (Pro).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.