Abstract

The technological aspects of the light inorganic crystalline compounds suitable to create scintillation materials to detect charged particles and neutrons in a wide energy range have been examined. Among them, Li2CaSiO4:Eu was found to be a prospective candidate to control the valent state of the Rare Earth (RE) and to provide a high intensity of luminescence. It was demonstrated that the material has room for future improvement; however, this requires precise engineering of its composition—an experimental search of compositions or additives that will provide the maximum Eu2+/Eu3+ ratio to achieve a high scintillation light yield. The benefits of light inorganic materials are disclosed through the modeling of the linear density of nonequilibrium carriers along secondary particle tracks created in scintillators utilized for neutron detection. It is shown that oxide matrices have a larger linear density in comparison with halide crystalline compounds under alpha-particles and tritons, whereas light oxides can provide smaller numbers under protons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call