Abstract

Illumination by visible light (400 Ix) of cultures containing larvae of Drosophila melanogaster can reduce survival (Bruins et al., Insect Biochemistry 21:535-539, 1991). Here we show that the effect of light depends on the presence of propionic or acetic acid in the food medium. We also show that survival is far more affected by illumination of the yeast food media than by direct illumination of the eggs and developing larvae. It is shown that addition of antioxidants to the food prevents light induced mortality. The action of antioxidants suggests that free radicals are important in light induced mortality. We also showed that both yeast and riboflavin (vitamin B2) solutions illuminated with visible light (400 Ix) generate hydrogen peroxide. Other vitamin and amino acid solutions do not produce peroxide in measurable amounts. However, the concentration of photogenerated hydrogen peroxide is far too low to explain the death of eggs and developing larvae upon exposure to light. A 400 Ix light treatment destroys the capability of yeast food media to support survival of larvae. Addition of vitamin C, carotene, tryptophan, nipagin, uric acid, or sucrose to the light treated medium does not restore viability. It is restored when riboflavin is added to the photo-inactivated yeast. A high concentration of pyridoxine also produced an improvement in survival. When riboflavin is treated with light, it cannot support survival on synthetic food media nor can it restore survival on light treated yeast food media. These results show that riboflavin (or a derivative) is a major light sensitive compound of yeast, which can be degraded by light. Light induced loss of riboflavin leads to mortality, because this is an essential dietary vitamin. The vitamin degradation can be prevented by dietary antioxidants. A chromatographic analysis confirms this conclusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.