Abstract

We study the non-equilibrium dynamics in a mesoscopic graphene ring excited by picoseconds shaped electromagnetic pulses. We predict an ultrafast buildup of charge polarization, currents and orbital magnetization. Applying the light pulses identified here, non-equilibrium valley currents are generated in a graphene ring threaded by a stationary magnetic flux. We predict a finite graphene ring magnetization even for a vanishing charge current; the magnetization emerges due to the light-induced difference of the valley populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.