Abstract
We present a new technique, light-induced triplet–triplet electron resonance spectroscopy (LITTER), which measures the dipolar interaction between two photoexcited triplet states, enabling both the distance and angular distributions between the two triplet moieties to be determined on a nanometer scale. This is demonstrated for a model bis-porphyrin peptide that renders dipolar traces with strong orientation selection effects. Using simulations and density functional theory calculations, we extract distance distributions and relative orientations of the porphyrin moieties, allowing the dominant conformation of the peptide in a frozen solution to be identified. LITTER removes the requirement of current light-induced electron spin resonance pulse dipolar spectroscopy techniques to have a permanent paramagnetic moiety, becoming more suitable for in-cell applications and facilitating access to distance determination in unmodified macromolecular systems containing photoexcitable moieties. LITTER also has the potential to enable direct comparison with Förster resonance energy transfer and combination with microscopy inside cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.