Abstract

The time-dependent exact-diagonalization method is used to study the light-induced phase transition of magnetic orders in the anisotropic triangular-lattice Hubbard model. Calculating the spin correlation function, we confirm that the phase transition from the 120$^{\circ}$ order to the N\'{e}el order can take place due to high-frequency periodic fields. We show that the effective Heisenberg-model Hamiltonian derived from the high-frequency expansion by the Floquet theory describes the present system very well and that the ratio of the exchange interactions expressed in terms of the frequency and amplitude of the external field determines the type of the magnetic orders. Our results demonstrate the controllability of the magnetic orders by tuning the external field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call