Abstract

Blue-light sensing proteins that use FAD (BLUF) are members of a blue-light receptor family that is widely distributed among microorganisms. The Escherichia coli YcgF protein is a BLUF protein consisting of the N-terminal FAD-binding hold (BLUF domain) and the C-terminal EAL domain. The EAL domain of YcgF is predicted to have cyclic-di-GMP phosphodiesterase activity. Light-induced structural changes for the signaling state formation were studied using the light-induced Fourier transform infrared (FTIR) difference spectroscopy of both the full-length YcgF protein (YcgF-Full) and its BLUF domain (YcgF-BLUF). YcgF-Full and YcgF-BLUF showed identical UV-visible absorption spectra of flavin in the dark state and a light-induced absorption red shift for the signaling state, which relaxed to the dark state showing identical kinetics. The light-induced FTIR difference spectrum of YcgF-Full, however, was markedly different from that of YcgF-BLUF. The spectrum of YcgF-BLUF lacked most of the IR bands that were induced in the YcgF-Full spectrum. These bands were assigned to the light-induced structural changes of the protein. However, the bands for the C4=O stretching of a FAD isoalloxazine ring were induced at the same frequency with the same band intensity in the spectra for YcgF-Full and YcgF-BLUF. Furthermore, the YcgF-Full spectrum resembled that of the YcgF-BLUF when illuminated at medium-low temperatures because of the selective suppression of protein bands. The possibility that full-length-specific protein bands are predominantly ascribed to structural changes of the C-terminal EAL domain in the signaling state as a consequence of light excitation of the N-terminal BLUF domain is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.