Abstract

Light-induced intersystem crossings in different Ni(II) macrocyclic ligand complexes with square-pyramidal and octahedral ligand-metal coordination have been investigated by means of static (DFT) and time-dependent density functional theory (TD-DFT) calculations, considering the MN12-SX exchange-correlation (XC) functional together with the def2-TZVP basis set. For the quantitative validation of the applied XC functional, the theoretical UV absorption spectra of azopyridine functionalized Ni-porphyrin macrocyclic ligand complex with square-pyramidal coordination have been compared with the experimental results obtained by Venkataramani et al. (Science, 331 (2011) 445). Using the TD-DFT method, the stability of the light–mediated reversible ligand coordination and the switching of magnetic properties have been characterized by identifying the active electronic excited states both in singlet and triplet spin configuration involved in the light-induced excited spin-state trapping. The location of the intersystem crossing points between different spin states has been performed and the strength of the spin-orbit coupling between them has been computed

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.