Abstract
Photochromic molecules can undergo a reversible conversion between two isomeric forms upon exposure to external stimuli such as electromagnetic radiation. A significant physical transformation accompanying the photoisomerization process defines them as photoswitches, with potential applications in various molecular electronic devices. As such, a detailed understanding of the photoisomerization process on surfaces and the influence of the local chemical environment on switching efficiency is essential. Herein, we use scanning tunneling microscopy to observe the photoisomerization of 4-(phenylazo)benzoic acid (PABA) assembled on Au(111) in kinetically constrained metastable states guided by pulse deposition. Photoswitching is observed at low molecular density and is absent in tight-packed islands. Furthermore, switching events were noted in PABA molecules coadsorbed in a host octanethiol monolayer, suggesting an influence of the surrounding chemical environment on photoswitching efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemphyschem : a European journal of chemical physics and physical chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.