Abstract
Coordination of two [Ru(bipy)(2)Cl](+) moieties (where bipy = 2,2'-bipyridine) to the pyridyl nitrogens in the 5,10-positions of meso-5,10,15-(4-Pyridyl)-20-(pentafluorophenyl)porphyrin gives the diruthenium porphyrin complex II. Insertion of copper(II) into the porphyrin center allows for the third pyridyl nitrogen to coordinate to Pt(dmso)Cl(2). Electronic transitions associated with the ruthenium porphyrin include an intense Soret band and four less intense Q-bands in the visible region of the spectrum. An intense π-π* transition in the UV region associated with the bipyridyl groups and a metal to ligand charge transfer (MLCT) band appearing as a shoulder to the Soret band are also observed. A slight blue shift of the Soret band and collapse of the Q-bands into one band is observed upon insertion of Cu(II) into the porphyrin center. No change in the electronic spectrum is observed upon coordination of the Pt(dmso)Cl(2) moiety. Electrochemical properties associated with the complexes include a redox couple in the cathodic region attributed to the porphyrin and a redox couple in the anodic region due to the Ru(III/II) couple. DNA titrations of the Cu/Ru and Cu/Ru/Pt porphyrins indicate that both complexes interact strongly with DNA potentially through a partial intercalation mechanism. Gel electrophoresis studies indicate that the Cu/Ru/Pt porphyrin has a greater effect on DNA migration through the gel than the well known DNA binding agent cis-platin. Irradiation of aqueous solutions of the Cu/Ru porphyrin and supercoiled DNA at a 5:1 base pair to complex ratio (in the absence of oxygen) with visible light above 400 nm shows a nicking of the DNA. Repeat experiments in the presence of oxygen show that the Cu/Ru porphyrin photocleaves the DNA, giving the linear form, as evidenced by gel electrophoresis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.