Abstract

We experimentally study the phase behavior of a charge-stabilized two-dimensional colloidal crystal which is subjected to a one-dimensional periodic light field. Such light fields are created by a scanned optical line tweezer which allows the variation of the periodicity without optical realignments. In order to realize a wide range of line spacings relative to the lattice constant, we use a suspension of silica particles in bromobenzene. This colloidal system has a Debye screening length of about 4.6 μm which results in the formation of crystals with lattice constants up to 20 μm. Because the refractive index of bromobenzene is larger than that of the colloids, optical gradient forces lead to the attraction of particles at regions where the intensity is smallest. Depending on the depth and periodicity of the optical potential, we observe the light-induced assembly of colloids into triangular, rhombic and square phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call