Abstract

The fusion of lipid membranes is central to many biological processes and requires substantial structural reorganization of lipids brought about by the action of fusogenic proteins. Previous molecular dynamics simulations have suggested that splayed lipids, whose tails transiently contact the headgroup region of the bilayer, initiate lipid mixing. Here, we explore the lipid splay hypothesis experimentally. We show that the light-induced trans/cis conversion of the azobenzene-based tail of a model lipid molecule enhances the probability by which its own acyl chains, or the acyl chains of the host lipid, transiently contact the lipid headgroup in a liposomal bilayer. At the same time, the trans/cis conversion triggers lipid mixing of sonicated or extruded liposomes, without requiring fusogenic proteins. This establishes a causal relationship between lipid splay and membrane fusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.