Abstract

We report two corrole based donor–acceptor (D–A) dyads, Cbz-Cor and Ptz-Cor to understand the energy/electron transfer reactions. In these D–A systems, the donor, either carbazole (Cbz) or phenothiazine (Ptz), is covalently connected at the meso-phenyl position of 10-(phenyl)-5,15-bis-(pentafluorophenyl)corrole (Ph-Cor) by C–N linkage. Both the dyads were characterized by 1H NMR, MALDI-TOF MS, UV-vis, electrochemical, computational methods, study state fluorescence and TCSPC techniques. A comparison of absorption spectra with their reference monomeric compounds (Cbz-Ph, Ptz-Ph and Ph-Cor) revealed minimal ground-state interactions between chromophores in both dyads. Fluorescence studies suggested that singlet–singlet energy transfer from 1Cbz* to corrole is the major photochemical pathway in the Cbz-Cor dyad with a quenching efficiency of [Formula: see text]99%. Detailed analysis of the data suggests that Forster’s dipole–dipole mechanism does not adequately explain this energy transfer. However, at a 410 nm excitation, florescence quenching is detected in Ptz-Cor (49%) supporting a photo induced electron transfer (PET) process from the ground state of PTZ to the excited state of corrole macrocycle. The electron-transfer rates ([Formula: see text] of Ptz-Cor are found in the range [Formula: see text] to [Formula: see text] and are concluded to be solvent dependent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call