Abstract

BackgroundNitric-oxide synthases (NOS) catalyze the formation of NO using NADPH as electron donor. We have recently designed and synthesized a new series of two-photon absorbing and photoactivatable NADPH analogues (NT). These compounds bear one or two carboxymethyl group(s) on the 2′- or/and 3′-position(s) of the ribose in the adenosine moiety, instead of a 2′-phosphate group, and differ by the nature of the electron donor in their photoactivatable chromophore (replacing the nicotinamide moiety). Here, we addressed the ability of NTs to photoinduce eNOS-dependent NO production in endothelial cells. MethodsThe cellular fate of NTs and their photoinduced effects were studied using multiphoton fluorescence imaging, cell viability assays and a BODIPY-derived NO probe for NO measurements. The eNOS dependence of photoinduced NO production was addressed using two NOS inhibitors (NS1 and L-NAME) targeting the reductase and the oxygenase domains, respectively. ResultsWe found that, two compounds, those bearing a single carboxymethyl group on the 3′-position of the ribose, colocalize with the Golgi apparatus (the main intracellular location of eNOS) and display high intracellular two-photon brightness. Furthermore, a eNOS-dependent photooxidation was observed for these two compounds only, which is accompanied by a substantial intracellular NO production accounting for specific photocytotoxic effects. ConclusionsWe show for the first time that NT photoactivation efficiently triggers electron flow at the eNOS level and increases the basal production of NO by endothelial cells. General significanceEfficient photoactivatable NADPH analogues targeting NOS could have important implications for generating apoptosis in tumor cells or modulating NO-dependent physiological processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call