Abstract
We investigated the effect of a photovoltaic field generated on the surface of iron-doped lithium niobate crystals on sessile droplets of a ferroelectric nematic liquid crystalline and a standard nematic liquid crystalline material present on this surface. When such an assembly is illuminated with a laser beam, a wide range of dynamic phenomena are initiated. Droplets located outside the laser spot are dragged in the direction of the illuminated area, while droplets located inside the illuminated region tend to bridge each other and rearrange into tendril-like structures. In the ferroelectric nematic phase (NF), these processes take place via the formation of conical spikes evolving into jet streams, similar to the behavior of droplets of conventional dielectric liquids exposed to overcritical electric fields. However, in contrast to traditional liquids, the jet streams of the NF phase exhibit profound branching. In the nematic phase (N) of both the ferroelectric nematic and the standard nematic material, dynamic processes occur via smooth-edged continuous features typical for conventional liquids subjected to under-critical fields. The difference in dynamic behavior is attributed to the large increase of dielectric permittivity in the ferroelectric nematic phase with respect to the dielectric permittivity of the nematic phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.