Abstract

5-(and-6)-Carboxy-2',7'-dichlorodihydrofluorescein diacetate (DCF-DA), a permeative indicator of oxidative stress, was loaded into dissected leaves of wheat in order to monitor the temporal development of reactive oxygen species. DCF fluorescence was found to be constant under dark conditions. Upon loading the leaves with salicyl hydroxamate, a blocker of the alternative oxidase, DCF fluorescence linearly increased in the dark. This indicates a function of alternative oxidase in preventing reactive oxygen radicals in the mitochondria. Upon illumination, the DCF signal decreased within 5 min. As illuminated chloroplasts would increase the load of reactive oxygen species, the observed decrease cannot be assigned to the production of reactive oxygen species in the chloroplasts. Three different putative mechanisms are considered which all assign an important role to light-induced delivery of NAD(P)H: (1) direct quenching of DCF fluorescence by light-generated NAD(P)H, (2) light-stimulated activation of scavenging enzymes, or (3) redirection of mitochondrial electron fluxes as caused by the delivery of excess redox equivalents (NADH) from the chloroplasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.