Abstract

Ultrasmall, uniform-size (∼1 nm) Si nanoparticles, dispersed from p-type boron-doped silicon, are reconstituted on a Si substrate. Electronic transport processes are studied by current–voltage spectroscopy at room temperature, using scanning tunneling microscopy, in a two-terminal configuration, under both dark conditions and light illumination. Unlike the dark conditions, we observe, under light irradiation, for negative tip biasing, a regular structure at ∼1.0 eV period. The series is discussed in terms of light-induced hole states that otherwise are highly infrequent in ultrasmall Si particles, under standard low doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.