Abstract
De-etiolation results in phytochrome destruction, greening, and the loss of the far-red high irradiance responses (HIR). Evidence is presented against the hypothesis that the loss of the far-red HIR is a direct consequence of phytochrome destruction. Loss of the far-red HIR for the inhibition of elongation in hypocotyls of Raphanus sativus involves two different, but linked, actions of phytochrome. An induction reaction requires the far-red absorbing form of phytochrome for about 20 min after which accumulation of its product depends only on time. A second reaction requires continuous light or frequent short irradiations and involves cycling of the phytochrome system. This acts on the product of the induction reaction. It is proposed that in green plants an important mode of operation of phytochrome in the light depends on pigment cycling, and that during de-etiolation this system is established under phytochrome control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.