Abstract

A novel energy-transfer system involving nonaggregated cationic porphyrins adsorbed on an anionic-type clay surface and the electron-transfer reaction that occurs after light harvesting are described. In the clay-porphyrin complexes, photochemical energy transfer from excited singlet zinc porphyrins to free-base porphyrins proceeds. The photochemical electron-transfer reaction from an electron donor in solution (hydroquinone) to the adsorbed porphyrin in the excited singlet state was also examined. Because the electron-transfer rate from the hydroquinone to the excited singlet free-base porphyrin is larger than that to the excited singlet zinc porphyrin, we conclude that the energy transfer accelerates the overall electron-transfer reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call