Abstract
We present a high statistics study of the light hadron spectrum and quark masses in QCD with two flavors of dynamical quarks. Numerical simulations are carried out using the plaquette gauge action and the O(a)-improved Wilson quark action at $\ensuremath{\beta}=5.2,$ where the lattice spacing is found to be $a=0.0887(11)\mathrm{fm}$ from the $\ensuremath{\rho}$ meson mass, on a ${20}^{3}\ifmmode\times\else\texttimes\fi{}48$ lattice. At each of five sea quark masses corresponding to ${m}_{\mathrm{PS}}{/m}_{\mathrm{V}}\ensuremath{\simeq}0.8--0.6,$ we generate 12 000 trajectories using a symmetrically preconditioned Hybrid Monte Carlo algorithm. Finite spatial volume effects are investigated employing ${12}^{3}\ifmmode\times\else\texttimes\fi{}48,$ ${16}^{3}\ifmmode\times\else\texttimes\fi{}48$ lattices. We also perform a set of simulations in quenched QCD with the same lattice actions at a similar lattice spacing to those for the full QCD runs. In the meson sector we find clear evidence of sea quark effects. The J parameter increases for lighter sea quark masses, and the full QCD meson masses are systematically closer to experiment than in quenched QCD. Careful finite-size studies are made to ascertain that these are not due to finite-size effects. Evidence of sea quark effects is less clear in the baryon sector due to larger finite-size effects. We also calculate light quark masses and find ${m}_{\mathrm{ud}}^{\overline{\mathrm{MS}}}(2\mathrm{}\mathrm{GeV}{)=3.223(}_{\ensuremath{-}0.069}^{+0.046})\mathrm{MeV}$ and ${m}_{s}^{\overline{\mathrm{MS}}}(2\mathrm{}\mathrm{GeV}{)=84.5(}_{\ensuremath{-}1.7}^{+12.0})\mathrm{MeV}$ which are about 20% smaller than in quenched QCD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.