Abstract

Machines have greatly contributed to the human civilization, enabling tasks beyond our capacities for improved quality of life. Recently, the progress in nanotechnology has triggered to build a miniaturized machine of nanoscale. In this context, synthetic nanomotors have gained considerable interest because of their great promise for diverse applications. Currently, the movement control of these nanomotors has been widely investigated using various stimuli. Here, we demonstrate near-infrared (NIR) light controlled on/off motion of stomatocyte nanomotors powered by the conversion of hydrogen peroxide. The nanomotors encapsulating naphthalocyanine (NC) are aggregated or separated (collective motion) with or without near-IR light illumination, resulting in the well-controlled movement. Remarkably, the nanomotors can move directionally toward hydrogen peroxide released from cancer cells and photothermally ablate the cancer cells. Taken together, our stomatocyte nanomotor systems can be effectively harnessed for autonomous photothermal cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call