Abstract

Background and introductionStatisticians rank oral and lip cancer sixth in global mortality at 10.2%. Mouth opening and swallowing are challenging. Hence, most oral cancer patients only report later stages. They worry about surviving cancer and receiving therapy. Oral cancer severely affects QOL. QOL is affected by risk factors, disease site, and treatment. Using oral cancer patient questionnaires, we use light gradient Boost Tree classifiers to predict life quality.MethodsDIAS records were used for 111 oral cancer patients. The European Organisation for Research and Treatment of Cancer’s QLQ-C30 and QLQ-HN43 were used to document the findings. Anyone could enroll, regardless of gender or age. The IHEC/SDC/PhD/OPATH-1954/19/TH-001 Institutional Ethical Clearance Committee approved this work. After informed consent, patients received the EORTC QLQ-C30 and QLQ-HN43 questionnaires. Surveys were in Tamil and English. Overall, QOL ratings covered several domains. We obtained patient demographics, case history, and therapy information from our DIAS (Dental Information Archival Software). Enrolled patients were monitored for at least a year. After one year, the EORTC questionnaire was retaken, and scores were recorded. This prospective analytical exploratory study at Saveetha Dental College, Chennai, India, examined QOL at diagnosis and at least 12 months after primary therapy in patients with histopathologically diagnosed oral malignancies. We measured oral cancer patients’ quality of life using data preprocessing, feature selection, and model construction. A confusion matrix was created using light gradient boosting to measure accuracy.ResultsLight gradient boosting predicted cancer patients’ quality of life with 96% accuracy and 0.20 log loss.ConclusionOral surgeons and oncologists can improve planning and therapy with this prediction model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.